THE TANGIER RADIO RELAY SYSTEMS

CARL G. DIETSCH

Engineering Department, BCA Communications, Inc.,

Summary—Long-rouge realis communications in the abort-scane boat or adversedy affected by unsparted distributions, among and ordered and the difficulty in circuits between New York and ports of horizontal this difficulty in circuits between New York and ports of horizontal realist particular and the second ports of horizontal ports of the contract of the contract of the contract of the contract of for clossing Tangher as the site, and describes the equipment successive for speed telegraph, telephone, and tradiplishts services, gettern defensely a speed telegraph, telephone, and tradiplishts services.

INTRODUCTION

Twill first commercial radiotelegraph circuits were operated in the long-wave band between 15 and 500 bilocycles. While these circuits could provide communications over virtually the entire world, they had several rather ericois direvokes. Personnel among these was the noise, or "static" as it was then called, which sometimes and less guidance communications difficult, or even impossible. This noise was chiefly due to dectrical storms, and so was particularly annoping in the tropics and other areas where such torms commonly

occur. The most obvious method of increasing the signal-to-noise ratio was by increasing the power output of the transmitters. In some cases, the use of directional receiving and/or transmitting antennas would provide additional improvement. Both of these annexactors were followed.

lowed, but ather severe practical limitations rentried their suctimes. Communications in the long-wave hand requires large amounts of power because of the low efficiency of antennas used for these wave lengths. The radio-frequency possersor must supply some 10 to 20 times the power setually radiated by the antennas. As a result, 200klowatt and even 90-80-klowatt alterators were common in the early dury of radiotologysth. At these levels, the power increase which would at a distant point, would be entirely out of the massion from an

economic standpoint.

Similarly, the improvement which was theoretically possible with

^{*} Decimal Classification: R480

directive antennas was difficult to achieve in practice. The beam width of a directive antenna is roughly proportional to the number of wave lengths contained in the radiating elements. Because of the long wave lengths involved, highly directive antennas were not feasible. For example, at 20 kincycles the physical length of a wave length is 35 miles. The construction of gigantic structures required to support a reasonably efficient transmitting antenna of that they was immortacile.

Another growing pain experienced by the wireless communication and the lack of space in the radio spectrum. Because of the large demand for frequencies in the long-wave region, there was little chance for expansion of communication services. As a result of these difficulties, communications engineers turned

their attention toward the short-wave hands (4 to 22 megacycles) which were known to have certain advantages over the longer waves, and where much of the spectrum was mussed. During the early 1920-4, and where much of the spectrum was mussed. During the carly 1920-6, and where much of short-wave radio techniques, so that in 1926 it was possible to establish a direct radio techniques, so that in 1926 it was possible to establish a direct. This proved to be superior to the existing long-wave circuits in neveral the superior of the scattering long-wave circuits in neveral the distribution of pervision of the scattering long-wave circuits in neveral head internation of pervision of the scattering long-wave circuits in neveral head internation of pervision of the scattering long-wave circuits in neveral head of the scattering long-wave circuits in neveral head of the scattering long-wave circuits in never long-wave ci

The success of this initial installation brought about the replacement with short-wave equipment of most of the long-wave grace defor circuits to South America. In addition, short-wave circuits were established for traffic with several European cities. On these European circuits, however, certain effects were discovered which were not present on the South American circuits. Large, rapid changes in signal

intensities were observed, and occasionally there would be complete abonese of signals for extended periods of time. There were also wide variations in signal intensities received from day to day and from how one of the contract of the co

Within a few years, techniques had been developed which permitted reliable short-wave communications on the European circuits during all but the most severe of the disturbances. Perhaps the most important single development in this respect was space diversity reception, which

¹ H. H. Beverage and H. O. Peterson, "Diversity Receiving System of RCA Communications, Inc. for Radiotelegraphy," Proc. I.R.E., Vol. 19, pp. 831-561, April, 1931. consists of a system of two or more directional receiving antennas spaced a sufficient distance agart so that the signal intensity on one antenna smally increases when there is a decrease in the signal received on another. The signals from these antennas are fed into a diversity receiver which automatically selects the one of greatest intensity, thus reducing the effects of signal fading. By using longwave circuits during the disturbed periods, continuously reliable communications were possible.

PROPAGATION STUDIES

Extensive studies were made of the vagaries of short-wave prosparion. These sceneral to indicate a correlation between field intensities and conditions of terrestrial magnetisms. Short-wave propagation core long distances depends on reflections of the transmitted wave by the E and F layers of ionization which form the ionosphere. When these layers are distorted areas. This effect had not been evident in the observed of the contraction of the co

sterms were also periods of greatest amount activity, and that the intensity of the storms was greated none the next nagaretic pole, in the Northern Hendagders. Since means of predicting unspot activity in the Northern Hendagders. Since means of predicting unspot activity regregation conditions. As a result of these discoveries, it was possible to establish onese which were designated as "effective," "distructed," ad "dead" with respect to a fixed communication center. Pipure 1 is a chart of these zones aloud New York for the year 19th. There is interest relationship between the severity of the distrartance and the distance to the distanced zone of an elevative socialise of the zone. The intensity also varies with solar activity, but the location of the maximum distratonce in the zone does not change apprecially. The zone continues a propriet of the storm of the propriets of the design of the principal conditions respectively.

It can be seen from Figure 1 that the cities of northern Europe and Indin lie in the disturbed zone. One method of obtaining reliable short-wave communications between these cities and New York is to employ a relay station at a location which does not lie near the dirturbed zones of either New York or the cities of northern Europe-

³ H. E. Hallborg, "Terrestrial Magnetism and Its Relations to World-Wide Short-Wave Communication," Proc. I.R.E., Vol. 24, pp. 455-471, March, 1936.

Pig. 1—Average disturbed and dead zones about New York for short-wave signals during 1942.

The scaport of Tangier is so situated. Figure 2 is a chart showing propagation zones with respect to Tangier. It might be supposed that

Fig. 2—Average disturbed and dead zones about Tangler for short-wave signals during 1942.

a location farther from the magnetic pole would be more desirable, but as the distance from the equator decreases, the noise increases. While the noise is much less troublesome on the short-wave than on long-wave circuits, it can, nevertheless, become a limiting factor in the tropics. On a noise scale which ranges from 1 to 5, Tangier has an annual average of 21/2.5 Approximately the same figure applies to Riverhead. Long Island, New York, where the RCA Communications main receiving station is located. Tangier, then, represents a good compromise between the opposing factors,

The utility of a relay station in northern Africa was demonstrated by the U. S. Army station which was put into operation in Algiers in 1944. This station enabled considerably more reliable Morse and teletyne service between the United States and our armed forces in Europe than had been possible on direct circuits.

THE TANGER RELAY STATION

In early 1946, RCA Communications Inc. installed a relay station on the northwest tip of Africa in the Tangler International Zone. The site of the station is approximately 16 miles south of the city of Tangier, Morocco. Figure 3 shows the traffic circuits that pass through the station. The principal purpose of the installation was to serve as a link in the New York-Moscow and New York-Bombay circuits, enabling continuous reliable short-wavé communications between these

² "Ionospheric Radio Propagation," National Bureau of Standards Circular #462, pp. 151-162, U. S. Government Printing Office, Washington,

562

cities. Soon after inauguration of this service, its usefulness was established for relaying traffic between New York and other cities in Northern Europe during periods when the space paths of the direct circuits were adversely affected by severe ionospheric storms and auroral phenomena. The value of the station is indicated by the fact that its facilities have increased approximately sixfold since 1946.

A plan of the station is shown in Figure 4. The administrative

offers are located in the receiving area in the northern part of the property, and the discretelectic power station and the (rota, water supply and pumping station are in the transmitter area in the southern specific parts of the property of the property of the property of the part. The main disord-electric unit is a low-special mealine capable of delivering approximately 400 kilovatts of 220-volt, 3-phase, 00-yellow power. This is shown in Pigure 5. In addition, there are 8 standily units, each rated at 50 kilowatts. There are provisions for synchronic in the standily outline to that they may be added to the main line in the standily outline to that they may be added to the main line

without interrupting the power supply. Step-up transformers provided 2000-voil power for transmission to the central radio office and receiving station. This is carried by two underground cables, either of which is capable of supplying the entire load. The voltage is stepped-down to 200 volts for use at these locations.

Prob. barter is additioned from a down wall comed by the Tanuler and the provided of the control of the

Fresh water is obtained from a deep well owned by the Tangier Administration. In order to ensure an adequate supply, it was necessary to install pumping facilities and more than a mile of cast iron pipe.

OPERATIONS

Communications between Tangler and New York are conducted over four sets of four-channel send/receive electronic time-division multiplex equipment. The five-unit teletype system is employed, with an operating speed of 80 words per minute. In addition to the timedivision equipment, there is a four-channel send/receive frequencydivision multiplex system which is operated in conjunction with singlesideband transmitting and receiving equipment. Except for each maintenance periods, the multiplex equipment is kept in continuous operation. Afterwint "sool" printer channel is need for the exchange of information and instructions between the operating personnel in New Yorks and Taneier.

Most of the traffic belvenen Tangier and the cities of Europe and the East is in the Fourt of Fewenit Despirator alguals. At Tangier, the received signals from the first leg of the circuit are punched on a tage. They are the road of the tage and fed into the second leg of the circuit. For the few resenting circuits which still employ Morres signals, a rapid system has been developed for converting fewenit teletype signals, are also given has been developed for converting fewenit teletype signals into Morse so as to minimize conversion delays.

The volume of turth between New York and certain European cities.

is such that multiplex channels are being planned for use between Tangler and the clies in question. A set of four-channel intend-vision electronic multiplex equipment is already in use between Tangler and the circuit, the aggregates signal is reduced—that is, London. On this circuit, the aggregates signal is reduced—that is, the signal is received at Tangler, demodalately, regenerated, and remainstite of on amother frequency. This method has the advantage that that both noise and distortion are eliminated. Extensive use of this technique in the future is indicated.

For leasted-shamed services between New York and several cities in Excrepe, five-unit teletype simple-channel signals are reskyed automatically. A regenerative peak may be used for each such channel at the output of the multiplex unit. This serves for restors the signals as nearly as possible to their original form prior to retransmission.

On occasion, Morse signals have also been automatically relayed. The signal is demodulated and then applied to a keying device which modulates the relay transmitter. This method has the disadvantage that both noise and distortion are relayed along with the signal, but a minimum of equipment is required at Taneier.

RECEIVING FOUIPMENT

The receivers employed at Tangier include twenty triple-diversity receivers, nine dual-diversity receivers, and one triple-diversity single-

receivers, "nine dual-diversity receivers, and one triple-diversity single
18, Sparks and R. G. Kreer, "Tape Relay System for Redictdegraph
Operation." Rel. Review, Vol. VIII. pp. 384-263, September, 1947.

13, B. Moore, "Recent Developments in Diversity Receiving Equipment," RCA Review, Vol. II, pp. 84-116, July, 1937.

sideband receiver. The last is used in conjunction with the frequencydivision multiples equipment. Each of the receivers is equipped with an antenna patching ramed so that it may be connected to any of the unmerous receiving antennas. In addition, each receiver has an andapter for receiving frequency-shift tolegraph signals. The frequency-shift system of keying has notable advantages over the off; on system, if and is used on mearly all of the signals relayed through Tangier. Figure 6 is an interior wise of the receiving station.

Fig. 6-Inngier receiving station. The control contar is at the left.

Rhombic receiving antennas are used almost exclusively. The location of the 22 rhombics now in use or nearing completion can be seen in Figure 4. The large number of antennas required is due to the wide band of frequencies which must be covered (4 to 22 megacycles), the directivity requirements, and the need for space diversity.

Ten of the antennas are in the form of five deal units. Each unit neploys four mach to support two transits to support two transits to support two transits of the pairs is for a "day" frequency, and the other for a "night" frequency, connected so that both can be used similarmounly. The night frequency antenna is mounted at the top of the masts, and the day frequency antenna at approximately 2.73 of the mean height of the night antenna. The remaining twelve risembles are single units. The distribution of the astennas, in terms of direction, is as follows:

⁶ H. O. Petersen, J. B. Atwood, H. E. Goldstine, G. E. Hamsell, and R. E. Schott, "Observations and Comparisons on Radiotelegraph Signalling by Froguency Shift and On/Off Keying," RCA Review, Vol. VII, pp. 11-31, March, 1946.

- 4 "night" antennas for New York 5 "day" antennas for New York
- - 1 "night" antenna for the Middle East Northern Europe.
- 3 general purpose antennas for the Middle East
- 3 general purpose antennas for the Near East
- 6 general purpose antennas for Middle, North, and Far

In addition to the rhombics, there are several dipole and 2 experimental

V-type antennas All of the rhombics are of standard design. Four-wire transmission

lines' are used to carry the signals to the antenna line termination structure adjacent to the receiver building. From there two-wire lines pass through plate glass lead-in ports, into the receiving building and distribute the signals to the various receiving locations. The interior two-wire lines are transposed at intervals of approximately two feet. The characteristic impedance of each transmission line from the output end of the exponential line of a particular rhombic antenna to the input terminals of a particular receiver is maintained at approximately 200 ohms. All transmission lines are carefully balanced to ground.

TRANSMITTING EQUIPMENT

The transmitters at Tangier are housed in two adjacent buildings with a combined floor area of 5700 square feet. Some of the transmitters may be seen in Figure 7. There are a total of 25 transmitters ne follows:

- 5 10-kilowatt transmitters
- 4 5-kilowatt transmitters
- 1 3-kilowatt transmitter 2 2-kilowatt transmitters
- 5 1-kilowatt transmitters

Either frequency-shift or on/off keying may be used on each transmitter. When using frequency-shift keying, a quartz crystal oscillator unit is employed to hold the transmitter frequency constant.

Twenty-six transmitting antennas are employed, all of which are rhombics. Four "day frequency" and four "night frequency" antennas are directed toward New York, twelve antennas are directed toward cities in Europe, five toward points in the Near and Middle East, and one toward Canetown.

Radio-frequency power from the transmitters is carried by truwire balanced transmissions through glass lead-in ports to a centraltransmission-line cross-connect frame outside of the main transmitte building. Two-wire open transmission lines lead from this frame to the main outdoor transmission-line trunks. The lines for the individual antennas branch off from the main trunk. The outdoor transmission lines are suscorted by wooden point.

BULANING RADIOPHOTO AND RADIOTELEPHONE SIGNAL

While the facilities at Tangier were installed primarily for the purpose of relating measure traffic and issued channel services, they have, on ceasins, also been used to rolary radiophro and radiothelpolary have, on ceasins, also been used to rolary radiophro and radiothelpolary have a result of the relating temperature of the relating temperature of the relating temperature of the relating temperature of the relating simple, a means of inking texpether the two space paths. Voice circuits are used to send operature instructions, food results have been detailed used to send operature instructions. God results have been detailed to ready and the relating temperature of the relating temperature

RCA REVIEW December 1953

Fig. 8—Photoradio picture relayed to New York via Tangier.

ACKNOWLEDGMENT

Credit is due to many engineers of RCA Communications, Inc. who contributed to the design, development and construction of the Tangler Relay Station. Particular credit is due to C. W. Latimer, D. S. Rau, J. L. Finch, and A. W. Long for their support and encouragement, H. E. Hallborg of RCA Laboratories Division gave valuable advice on the subject of radio propagation phenomena.